Simulation Evaluations of an Autonomous Urban Air Mobility Network Management and Separation Service

Christabelle S. Bosson

University Space Research Association - NASA Ames Research Center

Todd A. Lauderdale

NASA Ames Research Center

ATIO.TF-05

June 26, 2018

Motivation

- → Increased interest in Urban Air Mobility (UAM)
- → New aircraft types and missions
- Extend airspace uses to high-density and mixed operations
- → Paradigm shift towards greater levels of autonomy

Research Objectives

- Develop a research platform to explore far-term UAM operations
- Build and evaluate a prototype of an autonomous network management and separation concept under different operational conditions

Outline

- Prototype Algorithm
- Methodology
- Simulation Results
- Summary
- Future Work

Prototype Algorithm

- Prototype extending NASA's autonomous AutoResolver algorithm
- Trajectory-based algorithm that iteratively performs automated

- Uses 4D aircraft projected trajectories
- Applied in past research in the Dallas-Fort Worth metroplex [Erzberger et al., 2012,2016][Nikoleris et al.,2014,2016][Lauderdale et al.,2011,2018]

Prototype Algorithm

- AutoResolver capabilities for UAM operations
 - Separation assurance to avoid losses of separation (LOS)

Arrival management to avoid scheduling/sequencing conflicts (SEQ)

Prediction of a SEQ

Path stretch, speed, ground delay

Resolution types for a SEQ

- Generates conflict free and efficient trajectory resolutions
- Picks and issues autonomously best resolutions to aircraft

Airspace Details

Flight Route Network

8

Network-Wide Traffic Schedule

- 1 takeoff every 5min at all vertiports
- Sample takeoff time uniformly distributed over [0,10]s
- 2h traffic period: 450 flights

Aircraft Characteristics and Trajectory Generation

- e-VToL aircraft type
- Kinematic linear interpolation-based trajectory generator

Assumptions

- No uncertainty considered in the simulations
- No trajectory prediction errors
- Simplified kinematic-based aircraft model
- Segregated airspace
- Only UAM-type aircraft considered
- One vertipad modeled per vertiport
- Can immediately use vertipad once aircraft lands/departs
- No vertiport capacity and operations modeled

Evaluation Conditions

Test Case	Separation Standards	Sequencing Specification	Arrival Scheduling Horizon
1. Baseline	0.3nmi H 100ft V	60s	50min
2. Reduced lateral spacing	0.1nmi H 100ft V	60s	50min
3. Reduced temporal spacing	0.3nmi H 100ft V	45s	50min
4. Reduced arrival scheduling horizon	0.3nmi H 100ft V	60s	8min

Time at which the ETA at the arrival vertiport is computed and freezed

Christabelle Bosson 06/26/18 ATIO.TF-05

Separation standards comparison: 0.3nmi vs 0.1nmi

- Constant ground delay
- Less air delay
- Total delay decreased by 7.3%

- Fewer resolutions
- Total resolution number decreased by 26%
- More impact in air than on ground

Christabelle Bosson 06/26/18 ATIO.TF-05

Sequencing specification comparison: 60s vs 45s

- Decrease of all delays
- Total delay decreased by 28.4%

- Fewer resolutions
- Total resolution number decreased by 17%
- More impact on ground than in air

Christabelle Bosson 06/26/18 ATIO.TF-05

Arrival scheduling horizon comparison: 50min vs 8min

- Decrease of total delay
- Shift of ground to air delay
- Total delay decreased by 36.6%

- Similar aggregate resolution numbers
- Impacts on both ground and air

Summary

- Developed an initial implementation of a research platform to explore far-term UAM operations
- Evaluated a research prototype of an autonomous network management and separation concept under different operational conditions
- Demonstrated that AutoResolver's capabilities were effective at solving the designed scenario, under all three operational conditions and for the selected density, without creating any losses of separation
 - Delay and conflict resolution trends were as expected
 - Showed that allowing aircraft to takeoff prior to being scheduled can offer reduced delay values for the network

Future Work

Future work is required to

- Expand further the AutoResolver algorithm capabilities
- Evaluate more complex scenarios looking at
 - Interactions with non-UAM-aircraft in non-segregated airspace
 - Uncertainties
 - Different vertiport and vertipad configurations
 - Model aircraft battery usage

Thank you!

Questions?

christabelle.s.bosson@nasa.gov